SGK - Toán nâng cao

Câu 17 trang 226 SGK Đại số và Giải tích 11 Nâng cao




Tính các giới hạn sau :

a. \(\lim \sqrt {3{n^4} - 10n + 12} \)

b. \(\lim \left( {{{2.3}^n} - {{5.4}^n}} \right)\)

c. \(\lim \left( {\sqrt {{n^4} + {n^2} + 1}  - {n^2}} \right)\)

d. \(\lim {1 \over {\sqrt {{n^2} + 2n}  - n}}\)

Giải:

a. \(\lim \sqrt {3{n^4} - 10n + 12}  = \lim {n^2}.\sqrt {3 - {{10} \over {{n^3}}} + {{12} \over {{n^4}}}}  \)

                                           \(=  + \infty \)

b. \(\lim \left( {{{2.3}^n} - {{5.4}^n}} \right) = \lim {4^n}\left[ {2{{\left( {{3 \over 4}} \right)}^n} - 5} \right] =  - \infty \)

c.

 \(\eqalign{  & \lim \left( {\sqrt {{n^4} + {n^2} + 1}  - {n^2}} \right) \cr&= \lim {{{n^2} + 1} \over {\sqrt {{n^4} + {n^2} + 1}  + {n^2}}}  \cr  &  = \lim {{1 + {1 \over {{n^2}}}} \over {\sqrt {1 + {1 \over {{n^2}}} + {1 \over {{n^4}}}}  + 1}} = {1 \over 2} \cr} \)

 d. \(\lim {1 \over {\sqrt {{n^2} + 2n }- n }} = \lim {{\sqrt {{n^2} + 2n}  + n} \over {2n}} = \lim {{\sqrt {1 + {2 \over n} }+ 1 } \over 2} = 1\)

Đã có app Học Tốt - Giải Bài Tập trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Nếu thấy hay, hãy động viên và chia sẻ nhé! 12345