SGK - Toán

Bài 10 trang 63 - Sách giáo khoa toán 8 tập 2




Bài 10 Tam giác ABC có đường cao AH. Đường thẳng d song song với BC, cắt các cạnh AB,AC và đường cao AH theo thứ tự tại các điểm B', C' và H'(h.16)

a) Chứng minh rằng:

\(\frac{AH'}{AH}\) = \(\frac{B'C'}{BC}\).

b) Áp dụng: Cho biết AH' = \(\frac{1}{3}\) AH và diện tích tam giác ABC là 67.5 cm2

Tính diện tích tam giác AB'C'.

Giải:

a) Chứng minh \(\frac{AH'}{AH}\) = \(\frac{B'C'}{BC}\) 

Vì B'C' // với BC => \(\frac{B'C'}{BC}\) = \(\frac{AB'}{AB}\)            (1)

Trong ∆ABH có BH' // BH => \(\frac{AH'}{AH}\) = \(\frac{AB'}{BC}\)  (2)

Từ 1 và 2 => \(\frac{B'C'}{BC}\) = \(\frac{AH'}{AH}\)

b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của tam giác AB'C'.

Áp dụng kết quả câu a) ta có: AH' = \(\frac{1}{3}\) AH

\(\frac{B'C'}{BC}\) = \(\frac{AH'}{AH}\) = \(\frac{1}{3}\) => B'C' = \(\frac{1}{3}\) BC

=> SAB’C’= \(\frac{1}{2}\) AH'.B'C' = \(\frac{1}{2}\).\(\frac{1}{3}\)AH.\(\frac{1}{3}\)BC

=>SAB’C’= (\(\frac{1}{2}\)AH.BC)\(\frac{1}{9}\)

mà SABC= \(\frac{1}{2}\)AH.BC = 67,5 cm2

Vậy SAB’C’= \(\frac{1}{9}\).67,5= 7,5 cm2

Đã có app Học Tốt - Giải Bài Tập trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Nếu thấy hay, hãy động viên và chia sẻ nhé! 12345