SBT - Toán

Câu 19 trang 159 Sách bài tập (SBT) Toán 9 Tập 1




Cho đường tròn (O), đường kính AD = 2R. Vẽ cung tâm D bán kính R, cung này cắt đường tròn (O) ở B và C.

a)      Tứ giác OBDC là hình gì? Vì sao?

b)      Tính số đo các góc CBD, CBO, OBA.

c)      Chứng minh rằng tam giác ABC là tam giác đều.

Giải:

a) Ta có:

OB = OC = R (vì B, C nằm trên (O ; R))

DB = DC = R ( vì B, C nằm trên (D ; R))

Suy ra : OB = OC = DB = DC.

Vậy tứ giác OBDC là hình thoi.

b) Ta có: OB = OD = BD = R

∆OBD đều \( \Rightarrow \widehat {OBD} = 60^\circ \)

Vì OBDC là hình thoi nên:

\(\widehat {CBD} = \widehat {OBC} = {1 \over 2}\widehat {OBD} = 30^\circ \)

Tam giác ABD nội tiếp trong (O) có AD là đường kính nên:

\(\widehat {ABD} = 90^\circ \)

Mà            \(\widehat {OBD} + \widehat {OBA} = 90^\circ \)

Nên           \(\widehat {OBA} = \widehat {ABD} - \widehat {OBD} = 90^\circ  - 60^\circ  = 30^\circ \)

c) Tứ giác OBDC là hình thoi nên OD ⊥ BC hay AD ⊥ BC

Ta có:      AB = AC ( tính chất đường trung trực)

Suy ra tam giác ABC cân tại A   (1)

Mà  \(\widehat {ABC} = \widehat {OBC} - \widehat {OBA} = 30^\circ  + 30^\circ  = 60^\circ \).  (2)

Từ (1) và (2) suy ra tam giác ABC đều.

Đã có app Học Tốt - Giải Bài Tập trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Nếu thấy hay, hãy động viên và chia sẻ nhé! 12345