SBT - Toán

Câu 82 trang 18 Sách Bài Tập (SBT) Toán 9 Tập 1




a) Chứng mình:

\({x^2} + x\sqrt 3  + 1 = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\)

b) Tìm giá trị nhỏ nhất của biểu thức: \({x^2} + x\sqrt 3  + 1\). Giá trị đó đạt được khi x bằng bao nhiêu?

Gợi ý làm bài

a) Ta có:

\({x^2} + x\sqrt 3  + 1 = {x^2} + 2x{{\sqrt 3 } \over 2} + {3 \over 4} + {1 \over 4}\)

\(\eqalign{
& = {x^2} + 2x{{\sqrt 3 } \over 2} + {\left( {{{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \cr
& = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \cr} \)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b) Ta có:

\({x^2} + x\sqrt 3  + 1 = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\)

Vì \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} \ge 0\) với mọi x nên \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \ge {1 \over 4}\)

Giá trị biểu thức \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\) bằng \({1 \over 4}\) khi \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} = 0\)

Suy ra: \(x =  - {{\sqrt 3 } \over 2}.\)

Đã có app Học Tốt - Giải Bài Tập trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Nếu thấy hay, hãy động viên và chia sẻ nhé! 12345